Decentralized Sum-of-Nonconvex Optimization

4 Feb 2024  ·  Zhuanghua Liu, Bryan Kian Hsiang Low ·

We consider the optimization problem of minimizing the sum-of-nonconvex function, i.e., a convex function that is the average of nonconvex components. The existing stochastic algorithms for such a problem only focus on a single machine and the centralized scenario. In this paper, we study the sum-of-nonconvex optimization in the decentralized setting. We present a new theoretical analysis of the PMGT-SVRG algorithm for this problem and prove the linear convergence of their approach. However, the convergence rate of the PMGT-SVRG algorithm has a linear dependency on the condition number, which is undesirable for the ill-conditioned problem. To remedy this issue, we propose an accelerated stochastic decentralized first-order algorithm by incorporating the techniques of acceleration, gradient tracking, and multi-consensus mixing into the SVRG algorithm. The convergence rate of the proposed method has a square-root dependency on the condition number. The numerical experiments validate the theoretical guarantee of our proposed algorithms on both synthetic and real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods