Deep Ensemble Shape Calibration: Multi-Field Post-hoc Calibration in Online Advertising

17 Jan 2024  ·  Shuai Yang, Hao Yang, Zhuang Zou, Linhe Xu, Shuo Yuan, Yifan Zeng ·

In the e-commerce advertising scenario, estimating the true probabilities (known as a calibrated estimate) on CTR and CVR is critical and can directly affect the benefits of the buyer, seller and platform. Previous research has introduced numerous solutions for addressing the calibration problem. These methods typically involve the training of calibrators using a validation set and subsequently applying these calibrators to correct the original estimated values during online inference. However, what sets e-commerce advertising scenarios is the challenge of multi-field calibration. Multi-field calibration can be subdivided into two distinct sub-problems: value calibration and shape calibration. Value calibration is defined as no over- or under-estimation for each value under concerned fields. Shape calibration is defined as no over- or under-estimation for each subset of the pCTR within the specified range under condition of concerned fields. In order to achieve shape calibration and value calibration, it is necessary to have a strong data utilization ability.Because the quantity of pCTR specified range for single field-value sample is relative small, which makes the calibrator more difficult to train. However the existing methods cannot simultaneously fulfill both value calibration and shape calibration. To solve these problems, we propose a new method named Deep Ensemble Shape Calibration (DESC). We introduce innovative basis calibration functions, which enhance both function expression capabilities and data utilization by combining these basis calibration functions. A significant advancement lies in the development of an allocator capable of allocating the most suitable shape calibrators to different estimation error distributions within diverse fields and values.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here