Deep neural network approximation of composite functions without the curse of dimensionality

12 Apr 2023  ·  Adrian Riekert ·

In this article we identify a general class of high-dimensional continuous functions that can be approximated by deep neural networks (DNNs) with the rectified linear unit (ReLU) activation without the curse of dimensionality. In other words, the number of DNN parameters grows at most polynomially in the input dimension and the approximation error. The functions in our class can be expressed as a potentially unbounded number of compositions of special functions which include products, maxima, and certain parallelized Lipschitz continuous functions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here