Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Brain's Ventral Visual Pathway

24 Nov 2014  ·  Umut Güçlü, Marcel A. J. van Gerven ·

Converging evidence suggests that the mammalian ventral visual pathway encodes increasingly complex stimulus features in downstream areas. Using deep convolutional neural networks, we can now quantitatively demonstrate that there is indeed an explicit gradient for feature complexity in the ventral pathway of the human brain. Our approach also allows stimulus features of increasing complexity to be mapped across the human brain, providing an automated approach to probing how representations are mapped across the cortical sheet. Finally, it is shown that deep convolutional neural networks allow decoding of representations in the human brain at a previously unattainable degree of accuracy, providing a more sensitive window into the human brain.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here