Deep Quotient Manifold Modeling

1 Jan 2021  ·  Jiseob Kim, Seungjae Jung, Hyundo Lee, Byoung-Tak Zhang ·

One of the difficulties in modeling real-world data is their complex multi-manifold structure due to discrete features. In this paper, we propose quotient manifold modeling (QMM), a new data-modeling scheme that considers generic manifold structure independent of discrete features, thereby deriving efficiency in modeling and allowing generalization over untrained manifolds. QMM considers a deep encoder inducing an equivalence between manifolds; but we show it is sufficient to consider it only implicitly via a bias-regularizer we derive. This makes QMM easily applicable to existing models such as GANs and VAEs, and experiments show that these models not only present superior FID scores but also make good generalizations across different datasets. In particular, we demonstrate an MNIST model that synthesizes EMNIST alphabets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here