Deep Reinforcement Learning for Multi-User RF Charging with Non-linear Energy Harvesters

Radio frequency (RF) wireless power transfer (WPT) is a promising technology for sustainable support of massive Internet of Things (IoT). However, RF-WPT systems are characterized by low efficiency due to channel attenuation, which can be mitigated by precoders that adjust the transmission directivity. This work considers a multi-antenna RF-WPT system with multiple non-linear energy harvesting (EH) nodes with energy demands changing over discrete time slots. This leads to the charging scheduling problem, which involves choosing the precoders at each slot to minimize the total energy consumption and meet the EH requirements. We model the problem as a Markov decision process and propose a solution relying on a low-complexity beamforming and deep deterministic policy gradient (DDPG). The results show that the proposed beamforming achieves near-optimal performance with low computational complexity, and the DDPG-based approach converges with the number of episodes and reduces the system's power consumption, while the outage probability and the power consumption increase with the number of devices.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here