Detecting and interpreting myocardial infarction using fully convolutional neural networks

18 Jun 2018  ·  Nils Strodthoff, Claas Strodthoff ·

Objective: We aim to provide an algorithm for the detection of myocardial infarction that operates directly on ECG data without any preprocessing and to investigate its decision criteria. Approach: We train an ensemble of fully convolutional neural networks on the PTB ECG dataset and apply state-of-the-art attribution methods. Main results: Our classifier reaches 93.3% sensitivity and 89.7% specificity evaluated using 10-fold cross-validation with sampling based on patients. The presented method outperforms state-of-the-art approaches and reaches the performance level of human cardiologists for detection of myocardial infarction. We are able to discriminate channel-specific regions that contribute most significantly to the neural network's decision. Interestingly, the network's decision is influenced by signs also recognized by human cardiologists as indicative of myocardial infarction. Significance: Our results demonstrate the high prospects of algorithmic ECG analysis for future clinical applications considering both its quantitative performance as well as the possibility of assessing decision criteria on a per-example basis, which enhances the comprehensibility of the approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here