Paper

Differentially Private Average Consensus with Improved Accuracy-Privacy Trade-off

This paper studies the average consensus problem with differential privacy of initial states, for which it is widely recognized that there is a trade-off between the mean-square computation accuracy and privacy level. Considering the trade-off gap between the average consensus algorithm and the centralized averaging approach with differential privacy, we propose a distributed shuffling mechanism based on the Paillier cryptosystem to generate correlated zero-sum randomness. By randomizing each local privacy-sensitive initial state with an i.i.d. Gaussian noise and the output of the mechanism using Gaussian noises, it is shown that the resulting average consensus algorithm can eliminate the gap in the sense that the accuracy-privacy trade-off of the centralized averaging approach with differential privacy can be almost recovered by appropriately designing the variances of the added noises. We also extend such a design framework with Gaussian noises to the one using Laplace noises, and show that the improved privacy-accuracy trade-off is preserved.

Results in Papers With Code
(↓ scroll down to see all results)