Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning

24 Dec 2023  ·  Xiangyu Cui, Xun Li, Yun Shi, Si Zhao ·

This paper studies a discrete-time mean-variance model based on reinforcement learning. Compared with its continuous-time counterpart in \cite{zhou2020mv}, the discrete-time model makes more general assumptions about the asset's return distribution. Using entropy to measure the cost of exploration, we derive the optimal investment strategy, whose density function is also Gaussian type. Additionally, we design the corresponding reinforcement learning algorithm. Both simulation experiments and empirical analysis indicate that our discrete-time model exhibits better applicability when analyzing real-world data than the continuous-time model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here