Diversity Enhancement for Micro-Differential Evolution

25 Dec 2015  ·  Hojjat Salehinejad, Shahryar Rahnamayan, Hamid. R. Tizhoosh ·

The differential evolution (DE) algorithm suffers from high computational time due to slow nature of evaluation. In contrast, micro-DE (MDE) algorithms employ a very small population size, which can converge faster to a reasonable solution. However, these algorithms are vulnerable to a premature convergence as well as to high risk of stagnation. In this paper, MDE algorithm with vectorized random mutation factor (MDEVM) is proposed, which utilizes the small size population benefit while empowers the exploration ability of mutation factor through randomizing it in the decision variable level. The idea is supported by analyzing mutation factor using Monte-Carlo based simulations. To facilitate the usage of MDE algorithms with very-small population sizes, new mutation schemes for population sizes less than four are also proposed. Furthermore, comprehensive comparative simulations and analysis on performance of the MDE algorithms over various mutation schemes, population sizes, problem types (i.e. uni-modal, multi-modal, and composite), problem dimensionalities, and mutation factor ranges are conducted by considering population diversity analysis for stagnation and trapping in local optimum situations. The studies are conducted on 28 benchmark functions provided for the IEEE CEC-2013 competition. Experimental results demonstrate high performance and convergence speed of the proposed MDEVM algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here