Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?

26 Jun 2020  ·  Jiaxi Ying, José Vinícius de M. Cardoso, Daniel P. Palomar ·

We consider the problem of learning a sparse graph under the Laplacian constrained Gaussian graphical models. This problem can be formulated as a penalized maximum likelihood estimation of the Laplacian constrained precision matrix. Like in the classical graphical lasso problem, recent works made use of the $\ell_1$-norm regularization with the goal of promoting sparsity in Laplacian constrained precision matrix estimation. However, we find that the widely used $\ell_1$-norm is not effective in imposing a sparse solution in this problem. Through empirical evidence, we observe that the number of nonzero graph weights grows with the increase of the regularization parameter. From a theoretical perspective, we prove that a large regularization parameter will surprisingly lead to a complete graph, i.e., every pair of vertices is connected by an edge. To address this issue, we introduce the nonconvex sparsity penalty, and propose a new estimator by solving a sequence of weighted $\ell_1$-norm penalized sub-problems. We establish the non-asymptotic optimization performance guarantees on both optimization error and statistical error, and prove that the proposed estimator can recover the edges correctly with a high probability. To solve each sub-problem, we develop a projected gradient descent algorithm which enjoys a linear convergence rate. Finally, an extension to learn disconnected graphs is proposed by imposing additional rank constraint. We propose a numerical algorithm based on based on the alternating direction method of multipliers, and establish its theoretical sequence convergence. Numerical experiments involving synthetic and real-world data sets demonstrate the effectiveness of the proposed method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here