dotears: Scalable, consistent DAG estimation using observational and interventional data

30 May 2023  ·  Albert Xue, Jingyou Rao, Sriram Sankararaman, Harold Pimentel ·

New biological assays like Perturb-seq link highly parallel CRISPR interventions to a high-dimensional transcriptomic readout, providing insight into gene regulatory networks. Causal gene regulatory networks can be represented by directed acyclic graph (DAGs), but learning DAGs from observational data is complicated by lack of identifiability and a combinatorial solution space. Score-based structure learning improves practical scalability of inferring DAGs. Previous score-based methods are sensitive to error variance structure; on the other hand, estimation of error variance is difficult without prior knowledge of structure. Accordingly, we present $\texttt{dotears}$ [doo-tairs], a continuous optimization framework which leverages observational and interventional data to infer a single causal structure, assuming a linear Structural Equation Model (SEM). $\texttt{dotears}$ exploits structural consequences of hard interventions to give a marginal estimate of exogenous error structure, bypassing the circular estimation problem. We show that $\texttt{dotears}$ is a provably consistent estimator of the true DAG under mild assumptions. $\texttt{dotears}$ outperforms other methods in varied simulations, and in real data infers edges that validate with higher precision and recall than state-of-the-art methods through differential expression tests and high-confidence protein-protein interactions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here