Doubly Optimal No-Regret Learning in Monotone Games

30 Jan 2023  ·  Yang Cai, Weiqiang Zheng ·

We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate to a Nash equilibrium. While the $O(\frac{1}{\sqrt{T}})$ rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal $O(\sqrt{T})$ regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal $O(\frac{1}{T})$ last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an $O(\log T)$ individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art $O(\sqrt{T})$ bound.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here