Drive-Net: Convolutional Network for Driver Distraction Detection

22 Jun 2020  ·  Mohammed S. Majdi, Sundaresh Ram, Jonathan T. Gill, Jeffery J. Rodriguez ·

To help prevent motor vehicle accidents, there has been significant interest in finding an automated method to recognize signs of driver distraction, such as talking to passengers, fixing hair and makeup, eating and drinking, and using a mobile phone. In this paper, we present an automated supervised learning method called Drive-Net for driver distraction detection. Drive-Net uses a combination of a convolutional neural network (CNN) and a random decision forest for classifying images of a driver. We compare the performance of our proposed Drive-Net to two other popular machine-learning approaches: a recurrent neural network (RNN), and a multi-layer perceptron (MLP). We test the methods on a publicly available database of images acquired under a controlled environment containing about 22425 images manually annotated by an expert. Results show that Drive-Net achieves a detection accuracy of 95%, which is 2% more than the best results obtained on the same database using other methods

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here