EEG-MACS: Manifold Attention and Confidence Stratification for EEG-based Cross-Center Brain Disease Diagnosis under Unreliable Annotations

29 Apr 2024  ·  Zhenxi Song, Ruihan Qin, Huixia Ren, Zhen Liang, Yi Guo, Min Zhang, Zhiguo Zhang ·

Cross-center data heterogeneity and annotation unreliability significantly challenge the intelligent diagnosis of diseases using brain signals. A notable example is the EEG-based diagnosis of neurodegenerative diseases, which features subtler abnormal neural dynamics typically observed in small-group settings. To advance this area, in this work, we introduce a transferable framework employing Manifold Attention and Confidence Stratification (MACS) to diagnose neurodegenerative disorders based on EEG signals sourced from four centers with unreliable annotations. The MACS framework's effectiveness stems from these features: 1) The Augmentor generates various EEG-represented brain variants to enrich the data space; 2) The Switcher enhances the feature space for trusted samples and reduces overfitting on incorrectly labeled samples; 3) The Encoder uses the Riemannian manifold and Euclidean metrics to capture spatiotemporal variations and dynamic synchronization in EEG; 4) The Projector, equipped with dual heads, monitors consistency across multiple brain variants and ensures diagnostic accuracy; 5) The Stratifier adaptively stratifies learned samples by confidence levels throughout the training process; 6) Forward and backpropagation in MACS are constrained by confidence stratification to stabilize the learning system amid unreliable annotations. Our subject-independent experiments, conducted on both neurocognitive and movement disorders using cross-center corpora, have demonstrated superior performance compared to existing related algorithms. This work not only improves EEG-based diagnostics for cross-center and small-setting brain diseases but also offers insights into extending MACS techniques to other data analyses, tackling data heterogeneity and annotation unreliability in multimedia and multimodal content understanding.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here