Effects of Correlated Noise on the Performance of Persistence Based Dynamic State Detection Methods

31 Aug 2020  ·  Joshua Tempelman, Audun Myers, Jeffrey Scruggs, Firas Khasawneh ·

The ability to characterize the state of dynamic systems has been a pertinent task in the time series analysis community. Traditional measures such as Lyapunov exponents are often times difficult to recover from noisy data, especially if the dimensionality of the system is not known. More recent binary and network based testing methods have delivered promising results for unknown deterministic systems, however noise injected into a periodic signal leads to false positives. Recently, we showed the advantage of using persistent homology as a tool for achieving dynamic state detection for systems with no known model and showed its robustness to white Gaussian noise. In this work, we explore the robustness of the persistence based methods to the influence of colored noise and show that colored noise processes of the form $1/f^{\alpha}$ lead to false positive diagnostic at lower signal to noise ratios for $\alpha<0$.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here