Elements of effective machine learning datasets in astronomy

25 Nov 2022  ·  Bernie Boscoe, Tuan Do, Evan Jones, Yunqi Li, Kevin Alfaro, Christy Ma ·

In this work, we identify elements of effective machine learning datasets in astronomy and present suggestions for their design and creation. Machine learning has become an increasingly important tool for analyzing and understanding the large-scale flood of data in astronomy. To take advantage of these tools, datasets are required for training and testing. However, building machine learning datasets for astronomy can be challenging. Astronomical data is collected from instruments built to explore science questions in a traditional fashion rather than to conduct machine learning. Thus, it is often the case that raw data, or even downstream processed data is not in a form amenable to machine learning. We explore the construction of machine learning datasets and we ask: what elements define effective machine learning datasets? We define effective machine learning datasets in astronomy to be formed with well-defined data points, structure, and metadata. We discuss why these elements are important for astronomical applications and ways to put them in practice. We posit that these qualities not only make the data suitable for machine learning, they also help to foster usable, reusable, and replicable science practices.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here