Paper

Energy Efficiency Optimization Method of WDM Visible Light Communication System for Indoor Broadcasting Networks

This paper introduces a novel approach to optimize energy efficiency in wavelength division multiplexing (WDM) Visible Light Communication (VLC) systems designed for indoor broadcasting networks. A physics-based LED model is integrated into system energy efficiency optimization, enabling quantitative analysis of the critical issue of VLC energy efficiency: the nonlinear interplay between illumination and communication performance. The optimization jointly incorporates constraints on communication quality of each channel, and illumination performance, standardized by the International Commission on Illumination (CIE). The formulated nonlinear optimization problem is solved by the Sequential Quadratic Programming (SQP) algorithm in an experiment-based simulation. An integrated Red-Green-Blue-Yellow Light Emitting Diode (RGBY-LED) is measured for model calibration and three different scenarios are simulated to evaluate the generality of the proposed method. Results demonstrate a double enhancement in performance and a high versatility in accommodating various scenarios. Furthermore, it highlights the importance of balancing communication and illumination imperatives in VLC systems, challenging conventional perceptions focused solely on minimizing power consumption.

Results in Papers With Code
(↓ scroll down to see all results)