Entanglement Diagnostics for Efficient Quantum Computation

24 Feb 2021  ·  JoonHo Kim, Yaron Oz ·

We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev-Ye-Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here