Estimating Risk-Aware Flexibility Areas for EV Charging Pools via Stochastic AC-OPF

This paper introduces a stochastic AC-OPF (SOPF) for the flexibility management of electric vehicle (EV) charging pools in distribution networks under uncertainty. The SOPF considers discrete utility functions from charging pools as a compensation mechanism for eventual energy not served to their charging tasks. An application of the proposed SOPF is described where a distribution system operator (DSO) requires flexibility to each charging pool in a day-ahead time frame, minimizing the cost for flexibility while guaranteeing technical limits. Flexibility areas are defined for each charging pool and calculated as a function of a risk parameter involving the solution's uncertainty. Results show that all players can benefit from this approach, i.e., the DSO obtains a risk-aware solution, while charging pools/tasks perceive a reduction in the total energy payment due to flexibility services.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here