Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths

6 Feb 2022  ·  Yanming Che, Clemens Gneiting, Franco Nori ·

Feynman path integrals provide an elegant, classically inspired representation for the quantum propagator and the quantum dynamics, through summing over a huge manifold of all possible paths. From computational and simulational perspectives, the ergodic tracking of the whole path manifold is a hard problem. Machine learning can help, in an efficient manner, to identify the relevant subspace and the intrinsic structure residing at a small fraction of the vast path manifold. In this work, we propose the Feynman path generator for quantum mechanical systems, which efficiently generates Feynman paths with fixed endpoints, from a (low-dimensional) latent space and by targeting a desired density of paths in the Euclidean space-time. With such path generators, the Euclidean propagator as well as the ground-state wave function can be estimated efficiently for a generic potential energy. Our work provides an alternative approach for calculating the quantum propagator and the ground-state wave function, paves the way toward generative modeling of quantum mechanical Feynman paths, and offers a different perspective to understand the quantum-classical correspondence through deep learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here