Fidelity of Interpretability Methods and Perturbation Artifacts in Neural Networks

6 Mar 2022  ·  Lennart Brocki, Neo Christopher Chung ·

Despite excellent performance of deep neural networks (DNNs) in image classification, detection, and prediction, characterizing how DNNs make a given decision remains an open problem, resulting in a number of interpretability methods. Post-hoc interpretability methods primarily aim to quantify the importance of input features with respect to the class probabilities. However, due to the lack of ground truth and the existence of interpretability methods with diverse operating characteristics, evaluating these methods is a crucial challenge. A popular approach to evaluate interpretability methods is to perturb input features deemed important for a given prediction and observe the decrease in accuracy. However, perturbation itself may introduce artifacts. We propose a method for estimating the impact of such artifacts on the fidelity estimation by utilizing model accuracy curves from perturbing input features according to the Most Import First (MIF) and Least Import First (LIF) orders. Using the ResNet-50 trained on the ImageNet, we demonstrate the proposed fidelity estimation of four popular post-hoc interpretability methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here