Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization

19 Jul 2014  ·  Mehrdad Mahdavi ·

In the last several years, the intimate connection between convex optimization and learning problems, in both statistical and sequential frameworks, has shifted the focus of algorithmic machine learning to examine this interplay. In particular, on one hand, this intertwinement brings forward new challenges in reassessment of the performance of learning algorithms including generalization and regret bounds under the assumptions imposed by convexity such as analytical properties of loss functions (e.g., Lipschitzness, strong convexity, and smoothness). On the other hand, emergence of datasets of an unprecedented size, demands the development of novel and more efficient optimization algorithms to tackle large-scale learning problems. The overarching goal of this thesis is to reassess the smoothness of loss functions in statistical learning, sequential prediction/online learning, and stochastic optimization and explicate its consequences. In particular we examine how smoothness of loss function could be beneficial or detrimental in these settings in terms of sample complexity, statistical consistency, regret analysis, and convergence rate, and investigate how smoothness can be leveraged to devise more efficient learning algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here