Finite-Sample Symmetric Mean Estimation with Fisher Information Rate

28 Jun 2023  ·  Shivam Gupta, Jasper C. H. Lee, Eric Price ·

The mean of an unknown variance-$\sigma^2$ distribution $f$ can be estimated from $n$ samples with variance $\frac{\sigma^2}{n}$ and nearly corresponding subgaussian rate. When $f$ is known up to translation, this can be improved asymptotically to $\frac{1}{n\mathcal I}$, where $\mathcal I$ is the Fisher information of the distribution. Such an improvement is not possible for general unknown $f$, but [Stone, 1975] showed that this asymptotic convergence $\textit{is}$ possible if $f$ is $\textit{symmetric}$ about its mean. Stone's bound is asymptotic, however: the $n$ required for convergence depends in an unspecified way on the distribution $f$ and failure probability $\delta$. In this paper we give finite-sample guarantees for symmetric mean estimation in terms of Fisher information. For every $f, n, \delta$ with $n > \log \frac{1}{\delta}$, we get convergence close to a subgaussian with variance $\frac{1}{n \mathcal I_r}$, where $\mathcal I_r$ is the $r$-$\textit{smoothed}$ Fisher information with smoothing radius $r$ that decays polynomially in $n$. Such a bound essentially matches the finite-sample guarantees in the known-$f$ setting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here