Paper

Fully Spiking Neural Network for Legged Robots

In recent years, legged robots based on deep reinforcement learning have made remarkable progress. Quadruped robots have demonstrated the ability to complete challenging tasks in complex environments and have been deployed in real-world scenarios to assist humans. Simultaneously, bipedal and humanoid robots have achieved breakthroughs in various demanding tasks. Current reinforcement learning methods can utilize diverse robot bodies and historical information to perform actions. However, prior research has not emphasized the speed and energy consumption of network inference, as well as the biological significance of the neural networks themselves. Most of the networks employed are traditional artificial neural networks that utilize multilayer perceptrons (MLP). In this paper, we successfully apply a novel Spiking Neural Network (SNN) to process legged robots, achieving outstanding results across a range of simulated terrains. SNN holds a natural advantage over traditional neural networks in terms of inference speed and energy consumption, and their pulse-form processing of body perception signals offers improved biological interpretability. Applying more biomimetic neural networks to legged robots can further reduce the heat dissipation and structural burden caused by the high power consumption of neural networks. To the best of our knowledge, this is the first work to implement SNN in legged robots.

Results in Papers With Code
(↓ scroll down to see all results)