Function approximation with zonal function networks with activation functions analogous to the rectified linear unit functions

24 Sep 2017  ·  Hrushikesh N. Mhaskar ·

A zonal function (ZF) network on the $q$ dimensional sphere $\mathbb{S}^q$ is a network of the form $\mathbf{x}\mapsto \sum_{k=1}^n a_k\phi(\mathbf{x}\cdot\mathbf{x}_k)$ where $\phi :[-1,1]\to\mathbf{R}$ is the activation function, $\mathbf{x}_k\in\mathbb{S}^q$ are the centers, and $a_k\in\mathbb{R}$. While the approximation properties of such networks are well studied in the context of positive definite activation functions, recent interest in deep and shallow networks motivate the study of activation functions of the form $\phi(t)=|t|$, which are not positive definite. In this paper, we define an appropriate smoothess class and establish approximation properties of such networks for functions in this class. The centers can be chosen independently of the target function, and the coefficients are linear combinations of the training data. The constructions preserve rotational symmetries.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here