GarNet: A Two-Stream Network for Fast and Accurate 3D Cloth Draping

While Physics-Based Simulation (PBS) can accurately drape a 3D garment on a 3D body, it remains too costly for real-time applications, such as virtual try-on. By contrast, inference in a deep network, requiring a single forward pass, is much faster. Taking advantage of this, we propose a novel architecture to fit a 3D garment template to a 3D body. Specifically, we build upon the recent progress in 3D point cloud processing with deep networks to extract garment features at varying levels of detail, including point-wise, patch-wise and global features. We fuse these features with those extracted in parallel from the 3D body, so as to model the cloth-body interactions. The resulting two-stream architecture, which we call as GarNet, is trained using a loss function inspired by physics-based modeling, and delivers visually plausible garment shapes whose 3D points are, on average, less than 1 cm away from those of a PBS method, while running 100 times faster. Moreover, the proposed method can model various garment types with different cutting patterns when parameters of those patterns are given as input to the network.

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here