GCNBoost: Artwork Classification by Label Propagation through a Knowledge Graph

The rise of digitization of cultural documents offers large-scale contents, opening the road for development of AI systems in order to preserve, search, and deliver cultural heritage. To organize such cultural content also means to classify them, a task that is very familiar to modern computer science. Contextual information is often the key to structure such real world data, and we propose to use it in form of a knowledge graph. Such a knowledge graph, combined with content analysis, enhances the notion of proximity between artworks so it improves the performances in classification tasks. In this paper, we propose a novel use of a knowledge graph, that is constructed on annotated data and pseudo-labeled data. With label propagation, we boost artwork classification by training a model using a graph convolutional network, relying on the relationships between entities of the knowledge graph. Following a transductive learning framework, our experiments show that relying on a knowledge graph modeling the relations between labeled data and unlabeled data allows to achieve state-of-the-art results on multiple classification tasks on a dataset of paintings, and on a dataset of Buddha statues. Additionally, we show state-of-the-art results for the difficult case of dealing with unbalanced data, with the limitation of disregarding classes with extremely low degrees in the knowledge graph.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here