Gradient-free neural topology optimization

7 Mar 2024  ·  Gawel Kus, Miguel A. Bessa ·

Gradient-free optimizers allow for tackling problems regardless of the smoothness or differentiability of their objective function, but they require many more iterations to converge when compared to gradient-based algorithms. This has made them unviable for topology optimization due to the high computational cost per iteration and high dimensionality of these problems. We propose a pre-trained neural reparameterization strategy that leads to at least one order of magnitude decrease in iteration count when optimizing the designs in latent space, as opposed to the conventional approach without latent reparameterization. We demonstrate this via extensive computational experiments in- and out-of-distribution with the training data. Although gradient-based topology optimization is still more efficient for differentiable problems, such as compliance optimization of structures, we believe this work will open up a new path for problems where gradient information is not readily available (e.g. fracture).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here