GraphChallenge.org Triangle Counting Performance

18 Mar 2020  ·  Siddharth Samsi, Jeremy Kepner, Vijay Gadepally, Michael Hurley, Michael Jones, Edward Kao, Sanjeev Mohindra, Albert Reuther, Steven Smith, William Song, Diane Staheli, Paul Monticciolo ·

The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems. GraphChallenge.org provides a wide range of pre-parsed graph data sets, graph generators, mathematically defined graph algorithms, example serial implementations in a variety of languages, and specific metrics for measuring performance. The triangle counting component of GraphChallenge.org tests the performance of graph processing systems to count all the triangles in a graph and exercises key graph operations found in many graph algorithms. In 2017, 2018, and 2019 many triangle counting submissions were received from a wide range of authors and organizations. This paper presents a performance analysis of the best performers of these submissions. These submissions show that their state-of-the-art triangle counting execution time, $T_{\rm tri}$, is a strong function of the number of edges in the graph, $N_e$, which improved significantly from 2017 ($T_{\rm tri} \approx (N_e/10^8)^{4/3}$) to 2018 ($T_{\rm tri} \approx N_e/10^9$) and remained comparable from 2018 to 2019. Graph Challenge provides a clear picture of current graph analysis systems and underscores the need for new innovations to achieve high performance on very large graphs.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Distributed, Parallel, and Cluster Computing Performance

Datasets


  Add Datasets introduced or used in this paper