High-redshift supermassive black hole mergers in simulations with dynamical friction modelling

1 Feb 2023  ·  Colin DeGraf, Nianyi Chen, Yueying Ni, Tiziana Di Matteo, Simeon Bird, Michael Tremmel, Rupert Croft ·

In the near future, projects like LISA and Pulsar Timing Arrays are expected to detect gravitational waves from mergers between supermassive black holes, and it is crucial to precisely model the underlying merger populations now to maximize what we can learn from this new data. Here we characterize expected high-redshift (z > 2) black hole mergers using the very large volume Astrid cosmological simulation, which uses a range of seed masses to probe down to low-mass BHs, and directly incorporates dynamical friction so as to accurately model the dynamical processes which bring black holes to the galaxy center where binary formation and coalescence will occur. The black hole populations in Astrid include black holes down to 10$^{4.5}$ M$_\odot$, and remain broadly consistent with the TNG simulations at scales > 10$^6$ M$_\odot$ (the seed mass used in TNG). By resolving lower-mass black holes, the overall merger rate is ~5x higher than in TNG. However, incorporating dynamical friction delays mergers compared to a recentering scheme, reducing the high-z merger rate mass-matched mergers by a factor of ~2x. We also calculate the expected LISA Signal-to-Noise values, and show that the distribution peaks at high SNR (>100), emphasizing the importance of implementing a seed mass well below LISA's peak sensitivity (10$^6$ M$_\odot$) to resolve the majority of LISA's GW detections.

PDF Abstract