Shift-Curvature, SGD, and Generalization

21 Aug 2021  ·  Arwen V. Bradley, Carlos Alberto Gomez-Uribe, Manish Reddy Vuyyuru ·

A longstanding debate surrounds the related hypotheses that low-curvature minima generalize better, and that SGD discourages curvature. We offer a more complete and nuanced view in support of both. First, we show that curvature harms test performance through two new mechanisms, the shift-curvature and bias-curvature, in addition to a known parameter-covariance mechanism. The three curvature-mediated contributions to test performance are reparametrization-invariant although curvature is not. The shift in the shift-curvature is the line connecting train and test local minima, which differ due to dataset sampling or distribution shift. Although the shift is unknown at training time, the shift-curvature can still be mitigated by minimizing overall curvature. Second, we derive a new, explicit SGD steady-state distribution showing that SGD optimizes an effective potential related to but different from train loss, and that SGD noise mediates a trade-off between deep versus low-curvature regions of this effective potential. Third, combining our test performance analysis with the SGD steady state shows that for small SGD noise, the shift-curvature may be the most significant of the three mechanisms. Our experiments confirm the impact of shift-curvature on test loss, and further explore the relationship between SGD noise and curvature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods