Hypergraph $p$-Laplacian regularization on point clouds for data interpolation

2 May 2024  ·  Kehan Shi, Martin Burger ·

As a generalization of graphs, hypergraphs are widely used to model higher-order relations in data. This paper explores the benefit of the hypergraph structure for the interpolation of point cloud data that contain no explicit structural information. We define the $\varepsilon_n$-ball hypergraph and the $k_n$-nearest neighbor hypergraph on a point cloud and study the $p$-Laplacian regularization on the hypergraphs. We prove the variational consistency between the hypergraph $p$-Laplacian regularization and the continuum $p$-Laplacian regularization in a semisupervised setting when the number of points $n$ goes to infinity while the number of labeled points remains fixed. A key improvement compared to the graph case is that the results rely on weaker assumptions on the upper bound of $\varepsilon_n$ and $k_n$. To solve the convex but non-differentiable large-scale optimization problem, we utilize the stochastic primal-dual hybrid gradient algorithm. Numerical experiments on data interpolation verify that the hypergraph $p$-Laplacian regularization outperforms the graph $p$-Laplacian regularization in preventing the development of spikes at the labeled points.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here