IGR J14257-6117, a magnetic accreting white dwarf with a very strong X-ray orbital modulation

29 Apr 2018  ·  Bernardini F., de Martino D., Mukai K., Falanga M. ·

IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by \XMM\ at 0.3--10 keV, complemented with 10--80 keV coverage by \Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5\,s and a longer periodic variability at 4.05\,h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching $\sim100\%$ in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (${\rm N_{H}\sim10^{22-23}\,cm^{-2}}$), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate ($50^o\,\lesssim\,i\,\lesssim\,70^o$). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Astrophysical Phenomena