Improved Algorithms for Efficient Active Learning Halfspaces with Massart and Tsybakov noise

10 Feb 2021  ·  Chicheng Zhang, Yinan Li ·

We give a computationally-efficient PAC active learning algorithm for $d$-dimensional homogeneous halfspaces that can tolerate Massart noise (Massart and N\'ed\'elec, 2006) and Tsybakov noise (Tsybakov, 2004). Specialized to the $\eta$-Massart noise setting, our algorithm achieves an information-theoretically near-optimal label complexity of $\tilde{O}\left( \frac{d}{(1-2\eta)^2} \mathrm{polylog}(\frac1\epsilon) \right)$ under a wide range of unlabeled data distributions (specifically, the family of "structured distributions" defined in Diakonikolas et al. (2020)). Under the more challenging Tsybakov noise condition, we identify two subfamilies of noise conditions, under which our efficient algorithm provides label complexity guarantees strictly lower than passive learning algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here