Improved normal-boundary intersection algorithm: a method for energy optimization strategy in smart buildings

25 Jan 2022  ·  Jia Cui, Jiang Pan, Shunjiang Wang, Martin Onyeka Okoye, Junyou Yang, Yang Li, Hao Wang ·

With the widespread use of distributed energy sources, the advantages of smart buildings over traditional buildings are becoming increasingly obvious. Subsequently, its energy optimal scheduling and multi-objective optimization have become more and more complex and need to be solved urgently. This paper presents a novel method to optimize energy utilization in smart buildings. Firstly, multiple transfer-retention ratio (TRR) parameters are added to the evaluation of distributed renewable energy. Secondly, the normal-boundary intersection (NBI) algorithm is improved by the adaptive weight sum, the adjust uniform axes method, and Mahalanobis distance to form the improved normal-boundary intersection (INBI) algorithm. The multi-objective optimization problem in smart buildings is solved by the parameter TRR and INBI algorithm to improve the regulation efficiency. In response to the needs of decision-makers with evaluation indicators, the average deviation is reduced by 60% compared with the previous case. Numerical examples show that the proposed method is superior to the existing technologies in terms of three optimization objectives. The objectives include 8.2% reduction in equipment costs, 7.6% reduction in power supply costs, and 1.6% improvement in occupants' comfort.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here