Improved weight initialization for deep and narrow feedforward neural network

7 Nov 2023  ·  Hyunwoo Lee, Yunho Kim, Seung Yeop Yang, Hayoung Choi ·

Appropriate weight initialization settings, along with the ReLU activation function, have become cornerstones of modern deep learning, enabling the training and deployment of highly effective and efficient neural network models across diverse areas of artificial intelligence. The problem of \textquotedblleft dying ReLU," where ReLU neurons become inactive and yield zero output, presents a significant challenge in the training of deep neural networks with ReLU activation function. Theoretical research and various methods have been introduced to address the problem. However, even with these methods and research, training remains challenging for extremely deep and narrow feedforward networks with ReLU activation function. In this paper, we propose a novel weight initialization method to address this issue. We establish several properties of our initial weight matrix and demonstrate how these properties enable the effective propagation of signal vectors. Through a series of experiments and comparisons with existing methods, we demonstrate the effectiveness of the novel initialization method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods