Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization

10 Nov 2023  ·  Russell Alan Hart, Linlin Yu, Yifei Lou, Feng Chen ·

Deep neural networks have achieved significant success in the last decades, but they are not well-calibrated and often produce unreliable predictions. A large number of literature relies on uncertainty quantification to evaluate the reliability of a learning model, which is particularly important for applications of out-of-distribution (OOD) detection and misclassification detection. We are interested in uncertainty quantification for interdependent node-level classification. We start our analysis based on graph posterior networks (GPNs) that optimize the uncertainty cross-entropy (UCE)-based loss function. We describe the theoretical limitations of the widely-used UCE loss. To alleviate the identified drawbacks, we propose a distance-based regularization that encourages clustered OOD nodes to remain clustered in the latent space. We conduct extensive comparison experiments on eight standard datasets and demonstrate that the proposed regularization outperforms the state-of-the-art in both OOD detection and misclassification detection.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here