Paper

Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes

Graph convolutional neural networks~(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification, but little work has been done to explore their theoretical properties. Recently, several deep neural networks, e.g., fully connected and convolutional neural networks, with infinite hidden units have been proved to be equivalent to Gaussian processes~(GPs). To exploit both the powerful representational capacity of GCNs and the great expressive power of GPs, we investigate similar properties of infinitely wide GCNs. More specifically, we propose a GP regression model via GCNs~(GPGC) for graph-based semi-supervised learning. In the process, we formulate the kernel matrix computation of GPGC in an iterative analytical form. Finally, we derive a conditional distribution for the labels of unobserved nodes based on the graph structure, labels for the observed nodes, and the feature matrix of all the nodes. We conduct extensive experiments to evaluate the semi-supervised classification performance of GPGC and demonstrate that it outperforms other state-of-the-art methods by a clear margin on all the datasets while being efficient.

Results in Papers With Code
(↓ scroll down to see all results)