Informative Causality Extraction from Medical Literature via Dependency-tree based Patterns

13 Mar 2022  ·  Md. Ahsanul Kabir, AlJohara Almulhim, Xiao Luo, Mohammad Al Hasan ·

Extracting cause-effect entities from medical literature is an important task in medical information retrieval. A solution for solving this task can be used for compilation of various causality relations, such as, causality between disease and symptoms, between medications and side effects, between genes and diseases, etc. Existing solutions for extracting cause-effect entities work well for sentences where the cause and the effect phrases are name entities, single-word nouns, or noun phrases consisting of two to three words. Unfortunately, in medical literature, cause and effect phrases in a sentence are not simply nouns or noun phrases, rather they are complex phrases consisting of several words, and existing methods fail to correctly extract the cause and effect entities in such sentences. Partial extraction of cause and effect entities conveys poor quality, non informative, and often, contradictory facts, comparing to the one intended in the given sentence. In this work, we solve this problem by designing an unsupervised method for cause and effect phrase extraction, PatternCausality, which is specifically suitable for the medical literature. Our proposed approach first uses a collection of cause-effect dependency patterns as template to extract head words of cause and effect phrases and then it uses a novel phrase extraction method to obtain complete and meaningful cause and effect phrases from a sentence. Experiments on a cause-effect dataset built from sentences from PubMed articles show that for extracting cause and effect entities, PatternCausality is substantially better than the existing methods with an order of magnitude improvement in the F-score metric over the best of the existing methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods