Paper

Inhomogeneous illuminated image enhancement under extremely low visibility condition

Imaging through fog significantly impacts fields such as object detection and recognition. In conditions of extremely low visibility, essential image information can be obscured, rendering standard extraction methods ineffective. Traditional digital processing techniques, such as histogram stretching, aim to mitigate fog effects by enhancing object light contrast diminished by atmospheric scattering. However, these methods often experience reduce effectiveness under inhomogeneous illumination. This paper introduces a novel approach that adaptively filters background illumination under extremely low visibility and preserve only the essential signal information. Additionally, we employ a visual optimization strategy based on image gradients to eliminate grayscale banding. Finally, the image is transformed to achieve high contrast and maintain fidelity to the original information through maximum histogram equalization. Our proposed method significantly enhances signal clarity in conditions of extremely low visibility and outperforms existing algorithms.

Results in Papers With Code
(↓ scroll down to see all results)