Learning to Optimize Contextually Constrained Problems for Real-Time Decision-Generation

23 May 2018  ·  Aaron Babier, Timothy C. Y. Chan, Adam Diamant, Rafid Mahmood ·

The topic of learning to solve optimization problems has received interest from both the operations research and machine learning communities. In this work, we combine techniques from both fields to address the problem of learning to generate decisions to instances of continuous optimization problems where the feasible set varies with contextual features. We propose a novel framework for training a generative model to estimate optimal decisions by combining interior point methods and adversarial learning, which we further embed within an data generation algorithm. Decisions generated by our model satisfy in-sample and out-of-sample optimality guarantees. Finally, we investigate case studies in portfolio optimization and personalized treatment design, demonstrating that our approach yields advantages over predict-then-optimize and supervised deep learning techniques, respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here