Interpretable Hidden Markov Model-Based Deep Reinforcement Learning Hierarchical Framework for Predictive Maintenance of Turbofan Engines

27 Jun 2022  ·  Ammar N. Abbas, Georgios Chasparis, John D. Kelleher ·

An open research question in deep reinforcement learning is how to focus the policy learning of key decisions within a sparse domain. This paper emphasizes combining the advantages of inputoutput hidden Markov models and reinforcement learning towards interpretable maintenance decisions. We propose a novel hierarchical-modeling methodology that, at a high level, detects and interprets the root cause of a failure as well as the health degradation of the turbofan engine, while, at a low level, it provides the optimal replacement policy. It outperforms the baseline performance of deep reinforcement learning methods applied directly to the raw data or when using a hidden Markov model without such a specialized hierarchy. It also provides comparable performance to prior work, however, with the additional benefit of interpretability.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here