Introducing: DeepHead, Wide-band Electromagnetic Imaging Paradigm

23 Jul 2021  ·  A. Al-Saffar, L. Guo, A. Abbosh ·

Electromagnetic medical imaging in the microwave regime is a hard problem notorious for 1) instability 2) under-determinism. This two-pronged problem is tackled with a two-pronged solution that uses double compression to maximally utilizing the cheap unlabelled data to a) provide a priori information required to ease under-determinism and b) reduce sensitivity of inference to the input. The result is a stable solver with a high resolution output. DeepHead is a fully data-driven implementation of the paradigm proposed in the context of microwave brain imaging. It infers the dielectric distribution of the brain at a desired single frequency while making use of an input that spreads over a wide band of frequencies. The performance of the model is evaluated with both simulations and human volunteers experiments. The inference made is juxtaposed with ground-truth dielectric distribution in simulation case, and the golden MRI / CT imaging modalities of the volunteers in real-world case.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here