Knowledge-Aware Semantic Communication System Design and Data Allocation

30 Dec 2022  ·  Sachin Kadam, Dong In Kim ·

The recent emergence of 6G raises the challenge of increasing the transmission data rate even further in order to overcome the Shannon limit. Traditional communication methods fall short of the 6G goals, paving the way for Semantic Communication (SemCom) systems that have applications in the metaverse, healthcare, economics, etc. In SemCom systems, only the relevant keywords from the data are extracted and used for transmission. In this paper, we design an auto-encoder and auto-decoder that only transmit these keywords and, respectively, recover the data using the received keywords and the shared knowledge. This SemCom system is used in a setup in which the receiver allocates various categories of the same dataset collected from the transmitter, which differ in size and accuracy, to a number of users. This scenario is formulated using an optimization problem called the data allocation problem (DAP). We show that it is NP-complete and propose a greedy algorithm to solve it. Using simulations, we show that the proposed methods for SemCom system design outperform state-of-the-art methods in terms of average number of words per sentence for a given accuracy, and that the proposed greedy algorithm solution of the DAP performs significantly close to the optimal solution.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here