Paper

Lane Segmentation Refinement with Diffusion Models

The lane graph is a key component for building high-definition (HD) maps and crucial for downstream tasks such as autonomous driving or navigation planning. Previously, He et al. (2022) explored the extraction of the lane-level graph from aerial imagery utilizing a segmentation based approach. However, segmentation networks struggle to achieve perfect segmentation masks resulting in inaccurate lane graph extraction. We explore additional enhancements to refine this segmentation-based approach and extend it with a diffusion probabilistic model (DPM) component. This combination further improves the GEO F1 and TOPO F1 scores, which are crucial indicators of the quality of a lane graph, in the undirected graph in non-intersection areas. We conduct experiments on a publicly available dataset, demonstrating that our method outperforms the previous approach, particularly in enhancing the connectivity of such a graph, as measured by the TOPO F1 score. Moreover, we perform ablation studies on the individual components of our method to understand their contribution and evaluate their effectiveness.

Results in Papers With Code
(↓ scroll down to see all results)