Paper

Learning Efficient Multi-Agent Cooperative Visual Exploration

We tackle the problem of cooperative visual exploration where multiple agents need to jointly explore unseen regions as fast as possible based on visual signals. Classical planning-based methods often suffer from expensive computation overhead at each step and a limited expressiveness of complex cooperation strategy. By contrast, reinforcement learning (RL) has recently become a popular paradigm for tackling this challenge due to its modeling capability of arbitrarily complex strategies and minimal inference overhead. In this paper, we extend the state-of-the-art single-agent visual navigation method, Active Neural SLAM (ANS), to the multi-agent setting by introducing a novel RL-based planning module, Multi-agent Spatial Planner (MSP).MSP leverages a transformer-based architecture, Spatial-TeamFormer, which effectively captures spatial relations and intra-agent interactions via hierarchical spatial self-attentions. In addition, we also implement a few multi-agent enhancements to process local information from each agent for an aligned spatial representation and more precise planning. Finally, we perform policy distillation to extract a meta policy to significantly improve the generalization capability of final policy. We call this overall solution, Multi-Agent Active Neural SLAM (MAANS). MAANS substantially outperforms classical planning-based baselines for the first time in a photo-realistic 3D simulator, Habitat. Code and videos can be found at https://sites.google.com/view/maans.

Results in Papers With Code
(↓ scroll down to see all results)