Learning Fair and Interpretable Representations via Linear Orthogonalization

28 Oct 2019  ·  Yuzi He, Keith Burghardt, Kristina Lerman ·

To reduce human error and prejudice, many high-stakes decisions have been turned over to machine algorithms. However, recent research suggests that this does not remove discrimination, and can perpetuate harmful stereotypes. While algorithms have been developed to improve fairness, they typically face at least one of three shortcomings: they are not interpretable, their prediction quality deteriorates quickly compared to unbiased equivalents, and they are not easily transferable across models. To address these shortcomings, we propose a geometric method that removes correlations between data and any number of protected variables. Further, we can control the strength of debiasing through an adjustable parameter to address the trade-off between prediction quality and fairness. The resulting features are interpretable and can be used with many popular models, such as linear regression, random forest, and multilayer perceptrons. The resulting predictions are found to be more accurate and fair compared to several state-of-the-art fair AI algorithms across a variety of benchmark datasets. Our work shows that debiasing data is a simple and effective solution toward improving fairness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here