Learning to Act in Decentralized Partially Observable MDPs

ICML 2018  ·  Jilles Dibangoye, Olivier Buffet ·

We address a long-standing open problem of reinforcement learning in decentralized partially observable Markov decision processes. Previous attempts focussed on different forms of generalized policy iteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simpler to store and update than policies. We derive, under certain conditions, the first near-optimal cooperative multi-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedy maximization by mixed-integer linear programming. Experiments show our approach can learn to act near-optimally in many finite domains from the literature.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here