Learning to optimize by multi-gradient for multi-objective optimization

1 Nov 2023  ·  Linxi Yang, Xinmin Yang, Liping Tang ·

The development of artificial intelligence (AI) for science has led to the emergence of learning-based research paradigms, necessitating a compelling reevaluation of the design of multi-objective optimization (MOO) methods. The new generation MOO methods should be rooted in automated learning rather than manual design. In this paper, we introduce a new automatic learning paradigm for optimizing MOO problems, and propose a multi-gradient learning to optimize (ML2O) method, which automatically learns a generator (or mappings) from multiple gradients to update directions. As a learning-based method, ML2O acquires knowledge of local landscapes by leveraging information from the current step and incorporates global experience extracted from historical iteration trajectory data. By introducing a new guarding mechanism, we propose a guarded multi-gradient learning to optimize (GML2O) method, and prove that the iterative sequence generated by GML2O converges to a Pareto critical point. The experimental results demonstrate that our learned optimizer outperforms hand-designed competitors on training multi-task learning (MTL) neural network.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here